

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

BISTATIC RADAR SYSTEM ANALYSIS
AND SOFTWARE DEVELOPMENT

by

Teo, Ching Leong

December 2003

 Thesis Advisor: David C. Jenn
 Second Reader: D. Curtis Schleher

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Bistatic Radar System Analysis And Software Development

6. AUTHOR(S) Teo, Ching Leong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Bistatic radar has some properties that are distinctly different from monostatic radar. Recently bistatic

radar has received attention for its potential to detect stealth targets due to enhanced target forward scatter.

Furthermore, the feasibility of hitchhiker radar has been demonstrated, which allows passive radar receivers to

detect and track targets. This thesis developed a software simulation package in Matlab that provides a convenient

tool to examine the bistatic radar design parameters and predict system performance. The software model is

suitable for instructional purposes due to its user-friendly graphical user interface. Several bistatic radar

applications were used to illustrate the software features, and their results were analyzed and discussed.

15. NUMBER OF
PAGES 116

14. SUBJECT TERMS
Bistatic Radar, Multistatic Radar, Oval of Cassini, Performance Prediction, Computer
Simulation, Graphical User Interface

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

BISTATIC RADAR SYSTEM ANALYSIS
AND SOFTWARE DEVELOPMENT

Teo, Ching Leong

Singapore
B.Eng., University of Essex, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE
(ELECTRICAL ENGINEERING)

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Teo, Ching Leong

Approved by: Professor David C. Jenn

Thesis Advisor

Professor Curtis Schleher
Second Reader

Professor John Powers
Chairman,
Department of Electrical & Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Bistatic radar has some properties that are distinctly different from monostatic

radar. Recently bistatic radar has received attention for its potential to detect stealth

targets due to enhanced target forward scatter. Furthermore, the feasibility of hitchhiker

radar has been demonstrated, which allows passive radar receivers to detect and track

targets. This thesis developed a software simulation package in MATLAB that provides

a convenient tool to examine the bistatic radar design parameters and predict system

performance. The software model is suitable for instructional purposes due to its user-

friendly graphical user interface. Several bistatic radar applications were used to

illustrate the software features, and their results were analyzed and discussed.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BISTATIC RADAR THEORY...5
A. DEFINITIONS ...5
B. RANGE EQUATION ..6
C. OVALS OF CASSINI..7
D. TARGET LOCATION..9
E. COVERAGE AREA ..12

1. Detection-Constrained Coverage..12
2. Line-of-Sight-Constrained Coverage ...13

F. CUTTER CELL AREA...14
G. MAXIMUM UNAMBIGUOUS RANGE AND PRF17
H. DOPPLER RELATIONSHIP...17
I. ELECTRONIC COUNTERMEASURES ...18
J. SUMMARY ..19

III. SOFTWARE DESIGN APPROACH...21
A. OVERVIEW...21
B. BIDARSA MAIN MENU ..24
C. DESIGN PARAMETERS MENU..25
D. RANGE CALCULATION MENU...26
E. TARGET LOCATION MENU...27
F. COVERAGE AREA MENU...28
G. BISTATIC FOOTPRINT AND CLUTTER AREA MENU30
H. DOPPLER RELATIONSHIP MENU..31
I. EW EFFECTS MENU...32
J. SUMMARY ..33

IV. DESCRIPTION OF SOFTWARE OPERATION ..35
A. TEST DATA...35
B. BISTATIC RANGE PRODUCT ANALYSIS...36
C. TARGET LOCATION ANALYSIS...39
D. COVERAGE AREA ANALYSIS...40
E. BISTATIC FOOTPRINT ANALYSIS ..42
F. DOPPLER RELATION ANALYSIS...43
G. ELECTRONIC COUTNERMEASURES ANALYSIS45
H. SUMMARY ..46

V. SAMPLE SYSTEMS ANALYSIS..47
A. OVERVIEW...47
B. MONITORING OF SHIPPING CHANNEL ..47
C. NPS BISTATIC RADAR EXPERIMENT ..49
D. SUMMARY ..51

 viii

VI. SUMMARY AND CONCLUSIONS ..53
A. SUMMARY ..53
B. RECOMMENDATIONS...53

APPENDIX...55
A. MATLAB CODE FOR BIDARSA.M ...55
B. MATLAB CODE FOR DEFPARA.M..58
C. MATLAB CODE FOR RNGCAL.M ..64
D. MATLAB CODE FOR TGTLOC.M...71
E. MATLAB CODE FOR COVARE.M ..75
F. MATLAB CODE FOR FOTPRT.M ...80
G. MATLAB CODE FOR DOPREL.M ..85
H. MATLAB CODE FOR EWEFF.M ..89

LIST OF REFERENCES..95

INITIAL DISTRIBUTION LIST ...97

 ix

LIST OF FIGURES

Figure 2.1 Bistatic radar geometry. ...5
Figure 2.2 Bistatic radar geometry converted to the polar coordinate system. (After

Ref. [3].)...8
Figure 2.3 Ovals of Cassini, with constant SNR plots for K=30L4. (From Ref. [3].)9
Figure 2.4 Coverage area geometry. (From Ref. [3].)...14
Figure 2.5 Beamwidth limited clutter cell area. (From Ref. [7].)15
Figure 2.5 Pulsewidth limited clutter cell area. (From Ref. [7].)16
Figure 2.6 Bistatic doppler geometry. (From Ref. [3].) ..18
Figure 3.1 Bistatic radar system analysis model block diagram.22
Figure 3.2 Bidarsa main menu GUI..24
Figure 3.3 Define parameter GUI..25
Figure 3.4 Range calculation GUI...26
Figure 3.5 Target location GUI. ..27
Figure 3.6 Coverage area GUI. ...29
Figure 3.7 Clutter area GUI...30
Figure 3.8 Doppler relation GUI. ..31
Figure 3.9 EW Effects GUI...32
Figure 4.1 Range calculation menu output..36
Figure 4.2 System analysis: transmit power (top left), frequency (top right), target

RCS (bottom left) and SNR (bottom right)..37
Figure 4.3 Constant SNR oval of Cassini plot. ...38
Figure 4.4 Target location menu output. ...39
Figure 4.5 Coverage area menu output. ..40
Figure 4.6 Transmitter-target-receiver height analysis. ..41
Figure 4.7 Bistatic footprint menu output. ..42
Figure 4.8 Doppler Relation menu output...43
Figure 4.9 Doppler frequency shift analysis with different target aspect angle and

bistatic angle. ...44
Figure 4.10 EW Effects menu output. ...45
Figure 4.11 Burn-through range analysis with different target RCS.46
Figure 5.1 System analysis for shipping-channel example: transmit power (top left),

frequency (top right), target RCS (bottom left) and SNR (bottom right).48
Figure 5.2 NPS bistatic radar experiment configuration...49
Figure 6.1 CELLDAR concept of operation proposed by Roke Manor. (From Ref.

[9].)...54

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Test parameters used to evaluate Bidarsa program. ..35
Table 2. Test values used for target location analysis..39
Table 3. Test values used for coverage area analysis. ...40
Table 4. Test parameters for bistatic footprint analysis. ..42
Table 5. Test parameters used for doppler relationship analysis.43
Table 6. Test parameters used for electronic countermeasures analysis........................45
Table 7. Results for shipping-channel example. ..47
Table 8. System parameters for the NPS bistatic radar experiment...............................50

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to Professor David C. Jenn, my

thesis supervisor, for his guidance and patience throughout the year while working on this

thesis. His encouragement and advice have helped me overcome many difficulties along

the way in order to complete this thesis on time.

I would also like to thank Mr. Nicholas J. Willis, the author of Bistatic Radar

book, for the useful discussions and encouragement given. His book has been an

excellent source for understanding the subject.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

 EXECUTIVE SUMMARY

Bistatic radar uses different antennas separated at a substantial distance, for

transmission and reception. This fundamental difference in the bistatic radar has

generated several properties that are distinctly different from the monostatic radar. These

unique properties have offered bistatic radar certain advantages in several commercial

and military applications.

Recently bistatic radar has received attention for its potential to detect stealth

targets due to enhanced target forward scatter. Furthermore, the feasibility of hitchhiker

radar has been demonstrated, which allows passive radar receivers to detect and track

targets, using transmitter of opportunity. Thus, it is likely that bistatic radar will play a

much bigger role in near-future military warfare.

Design, development, and testing of radar systems have traditionally been

expensive and time-consuming tasks. Radar designers are often faced with many design

iterations to optimize the system performance. Thus, using computer simulation and

modeling will provide the designer the essential tools to examine design parameters and

to evaluate the system performance before the actual implementation in hardware.

There are many software applications available for monostatic radar simulation

but none exits in the public domain for bistatic radar. The objective of this thesis is to

develop a general software model to analyze the bistatic radar system performance as a

function of the system design parameters.

The thesis focused on the design and development of a Graphical User Interface

(GUIs) in MATLAB to integrate the bistatic radar parameters and to examine several

critical performance tradeoffs. The end product is a program named Bidarsa, which

provides a convenient instructional tool for engineering communities to understand,

analyze, and predict bistatic radar performance.

The thesis presents an overview of bistatic radar definitions and the parameters

involved in the range equation. The radar detection contour, the calculation to determine

target location, considerations for the bistatic footprint, the doppler relationship for a

 xvi

moving target, and the electronic countermeasures (ECM) issues are discussed with their

supporting mathematical equations. These equations were used to formulate the software

model.

The Bidarsa program consists of eight major modules developed and integrated to

carry out the required performance prediction and system analyses. A set of radar

parameters was compiled to demonstrate the software functions. The thesis further

illustrates the software functions with two bistatic radar applications. The first

application used bistatic radar to monitor shipping channel, and the second application

investigated the feasibility of using direct television broadcast satellites and ground-based

bistatic receivers to detect targets.

1

I. INTRODUCTION

Bistatic radar has come a long way from its initial days well before the outbreak

of World War II. Many scientists were trying new radar configurations where the

receiver was located separately from the transmitter. The main motivation at that time

was to gain sufficient radio frequency isolation between the two electronics sets,

particularly with the numerous ongoing continuous wave (CW) experiments [1]. This

fundamental difference in the bistatic radar over monostatic radar has offered many

opportunities in both commercial and military applications. Over the years and through

three resurgences, many bistatic radar systems have been proposed, developed, and tested

in many countries including the United States, United Kingdom, France, Soviet Union,

Germany and Japan.

This unique difference has offered bistatic radar certain advantages for particular

tasks [2]:

• The receiver is completely passive, and hence undetectable, by the electronic support

measures, and it is safe from attack by anti-radiation missiles or deliberate directional

interference and jamming.

• The receiver can be located in a favorable area where transmitters are not allowed,

such as flammable-liquids stores, gas terminals, etc.

• No transmit-receive switch or duplexer is required. These devices are lossy,

expensive, and heavy (important for air-borne radar applications).

• With certain configurations, less transmitter power is required compared to the

monostatic radar.

• Higher pulse repetition frequencies (PRFs) can be used because a bistatic system does

not suffer the same range blindness as the equivalent monostatic system.

• If the target angle can be measured at both sites, as well as the bistatic range, data can

be checked for self-consistency to remove false alarms.

2

Taking a closer examination of the military applications, bistatic radar principles

have been deployed in systems such as semiactive homing missiles, forward-scatter

fences, multistatic radar, and hitchhikers [3]. Much research is being done, and

continues, in particular with regard to the last two applications mentioned.

The multistatic radar uses several distributed receivers associated with a single or

multiple transmitters. It is suitable for wide area tracking and it also increases the

probability of detection. The bistatic hitchhiker uses a transmitter of opportunity, either

friendly (cooperative) or hostile (non-cooperative), to detect and locate targets near the

transmitter or receiver site. There is no doubt that these bistatic radar principles are

playing a bigger role in today’s military for the detection of low signature targets and

improving the electronic countermeasures and counter-countermeasures.

Design, development, and testing of radar systems have traditionally been

expensive and time consuming tasks. Radar designers are often faced with many design

iterations to optimize the system performance. Using computer simulation and modeling

provides the designer with the essential tools to examine design parameters and evaluate

the system performance before the actual implementation in hardware.

There are many software applications available for monostatic radar simulation

but none exits in the public domain for bistatic radar. The objective of this thesis was to

develop a general software model to analyze the bistatic radar system performance as a

function of the system design parameters.

The thesis focused on the design and development of a Graphical User Interface

(GUIs) in MATLAB to integrate the bistatic radar parameters, and examine several

critical performance tradeoffs. The end product is a program named Bidarsa, which

provides a convenient instructional tool for engineering communities to understand,

analyze, and predict bistatic radar performance.

Chapter II provides the theoretical background required in the formulation of the

software model. It presents an overview of bistatic radar definitions and the parameters

involved in the range equation. The radar detection contour, the calculation to determine

target location, considerations for the bistatic footprint, the doppler relationship for a

3

moving target, and the electronic countermeasures (ECM) issues are discussed with their

supporting mathematical equations.

Chapter III presents the design approach for the Bidarsa program. A system

block diagram detailing the interfaces and data flow sequences is used to illustrate the

functions of the eight major modules and how they are integrated.

Chapter IV uses a set of radar system parameters compiled to demonstrate the

Bidarsa program functions and discuss its results.

Chapter V uses the Bidarsa software to predict the system performance in

different practical scenarios suggested in References [2] and [4]. The result is analyzed

and compared with the monostatic radar configuration.

Chapter VI summarizes the research and suggests further work that could be

performed to enhance the code.

Finally, the appendix lists the software codes written for the Bidarsa program.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BISTATIC RADAR THEORY

A. DEFINITIONS

The IEEE Standard 686-1997 [5] has defined bistatic radar as a radar using

antennas for transmission and reception at sufficiently different locations that the angles

or ranges from those locations to the target are significantly different. Figure 2.1 is used

to illustrate this definition, showing a transmitter Tx and receiver Rx being situated at two

locations with a baseline separation distance L. The bistatic angle, β, is one of the

important parameters which characterizes bistatic radar and affects system performance.

These relationships will be discussed in the subsequent sections.

Figure 2.1 Bistatic radar geometry.

There is no strict definition specifying the distance between the transmitter and

receiver sites. Several discussions [1, 3, 6] suggest that the baseline, L, could range from

tens of meters to hundreds of kilometers, depending on the required functions of the

Transmitter, Tx Receiver, Rx

Target-Receiver
Range,
RR

Transmitter-Target
Range,
RT

Baseline, L

Bistatic
Angle, β

Target

6

particular bistatic radar system. The distance RT is the range from the transmitter-to-

target, while RR is the range from the target-to-receiver.

B. RANGE EQUATION

The bistatic range equation is derived in a similar manner as the monostatic radar

range equation. The bistatic maximum range product is given by [3]

 ()
() ()

1
22 2 2

3max
min

4 /
T T R B T R

T R
s n T R

P G G F FR R
kT B S N L L

λ σ
π

 =

 (2.1)

or

 ()maxT RR R κ= (2.2)

where

RT = transmitter-to-target range (m),

RR = target-to-receiver range (m),

PT = transmitted power output (W),

GT = transmitting antenna power gain,

GR = receiving antenna power gain,

λ = transmitting frequency wavelength (m),

σB = target bistatic radar cross section (RCS) (m2),

FT = pattern propagation factor for the transmitter-to-target path,

FR = pattern propagation factor for the target-to-receiver path,

k = Boltzmann’s constant, 1.3807 ×10-23 J/K,

TS = receiver noise temperature (°K),

Bn = receiver noise bandwidth (Hz),

(S/N)min = minimum signal-to-noise power ratio required for detection,

7

LT = transmitting system losses (≥ 1),

LR = receiving system losses (≥ 1),

κ = bistatic maximum range product.

In the bistatic radar range equation, it is observed that the maximum range (RTRR)2

has replaced the range R4 in the monostatic radar equation, due to the different locations

of the transmitter and receiver.

The pattern-propagation factors for the transmitter-to-target and target-to-receiver,

FT and FR, also need to be taken care of separately in the bistatic case. This is because

the transmitting path and receiving path can be very different in nature as compared to

the monostatic implementation.

C. OVALS OF CASSINI

The oval of Cassini is the locus of a points, the product of whose distance from

two fixed points is a constant. In the bistatic radar case, it is interesting to analyze the

system performance by plotting the ovals of Cassini as a function of signal-to-noise

power ratio, S/N, with the ranges, RT and RR, at the vertices of the triangle.

Equation (2.1) is modified and written as

 () ()
2

max
min

/T R
KR R

S N
= (2.3)

where K is the bistatic radar constant and given by

()

2 2 2

34
T T R B T R

s n T R

P G G F FK
kT B L L
λ σ

π
= . (2.4)

The constant K is related to the bistatic maximum range product, κ , by

 ()2
min

/K S Nκ= . (2.5)

Figure 2.2 shows RT and RR being converted into the polar coordinate system

(r,θ). From geometry

8

 ()2 2 2 / 4 cosTR r L rL θ= + + (2.6)

and

 ()2 2 2 / 4 cosRR r L rL θ= + − . (2.7)

Combining Equations (2.6) and (2.7) yields

 () ()22 2 2 2 2 2/ 4 cosT RR R r L r L θ= + − . (2.8)

Figure 2.2 Bistatic radar geometry converted to the polar coordinate system. (After

Ref. [3].)

The constant /S N ratio can subsequently be plotted as ovals of Cassini using the

equation

 ()
()22 2 2 2 2

/
/ 4 cos

KS N
r L r L θ

=
+ −

. (2.9)

Reference [3] has provided an example of the oval of Cassini plot, as shown in Figure

2.3, with K arbitrarily set to 30L4 and constant /S N ratios from 10 dB to 30 dB.

Target-
Receiver
Range,
RR N N

Origin

L/2

Transmitter, Tx Receiver, Rx

L/2

θ
θR

Transmitter-Target
Range,
RT

θT

Target

9

For analytical purposes, σB, FT and FR are assumed to be invariant with r and θ so

as to generate a constant-SNR oval-of-Cassini plot. A series of plots shows that bistatic

radar operation can be divided into three distinct regions:

1. 2L κ> . Two separate ellipses result enclosing the transmitter and

receiver. It is considered receiver centered when T RR R>> ; transmitter

centered when R TR R>> .

2. 2L κ< . A single continuous ellipse results.

3. 2L κ= . A lemniscate with a cusp at origin results.

Figure 2.3 Ovals of Cassini, with constant SNR plots for K=30L4. (From Ref. [3].)

D. TARGET LOCATION

A bistatic receiver usually measures the angles of arrival of the target echo and

estimates the range. The receiver-to-target range, RR, cannot be measured directly, but

can be calculated by solving the bistatic triangle. When the transmitter location is made

known to the receiver, the baseline range, L, is known. The total signal propagation time

10

from transmitter to target to receiver is also required to be established. This is needed for

the receiver to convert the time measurement into the range sum estimation, RT + RR.

From Figures 2.2 and 2.3, it can be seen that the isorange contour has to be an

ellipse, rather than the tangent approximation. It is defined by

 2T RR R a+ = (2.10)

where 2a is the major axis of the ellipse, the eccentricity of the ellipse, e, is

 / 2e L a= (2.11)

 ()/ T Re L R R= + . (2.12)

Using the law of cosines, RR and RT can be calculated by measuring the L, (RT + RR), and

either the angle θT or θR.

For the case when θT is measured

 ()2 2 2 2 cos 90R T T TR R L R L θ= + − ° − (2.13)

 ()
()

2 2

2 sin
T R

T
T R T

R R L
R

R R L θ
+ −

=
+ −

 (2.14)

 ()
1

2 2 22 sinR T T TR R L R L θ= + − . (2.15)

Combining Equations (2.12) and (2.14) yields

()

()

21

2 1 sinT
T

L e
R

e e θ
−

=
−

 (2.16)

and combining Equations (2.12) and (2.15) yields

()

()

2 1 2 sin

2 1 sin
T

R
T

L e R
R

e e

θ
θ

+ −
=

−
. (2.17)

Similarly, for the case when θR is measured

 ()2 2 2 2 cos 90T R R RR R L R L θ= + − ° + (2.18)

11

 ()
()

2 2

2 sin
T R

R
T R R

R R L
R

R R L θ
+ −

=
+ +

 (2.19)

 ()
1

2 2 22 sinT R R RR R L R L θ= + + . (2.20)

Combining Equations (2.12) and (2.19) yields

()

()

21

2 1 sinR
R

L e
R

e e θ
−

=
+

. (2.21)

Finally, combining Equations (2.12) and (2.20) yields

()

()

2 1 2 sin

2 1 sin
R

T
R

L e R
R

e e

θ
θ

+ +
=

+
. (2.22)

Using the law of sines, it is also possible to establish the parameter ratios to

calculate the bistatic angle, β, with the measured RR and RT and the calculated θT and θR.

Their relationship is given by

 () ()sin 90 sin 90 sin
R T

T R

R R L
θ θ β

= =
° − ° +

. (2.23)

Thus

 cos
cos

R T

T R

R
R

θ
θ

= (2.24)

 cos
sin

R TR
L

θ
β

= (2.25)

 1 cossin T

R

L
R

θβ −
=

. (2.26)

Also,

 cos
sin

T RR
L

θ
β

= (2.27)

12

 1 cossin R

T

L
R

θβ −
=

. (2.28)

E. COVERAGE AREA

There are two considerations for establishing the coverage area of the bistatic

radar: (1) the detection-constraint which is determined by the maximum range oval of

Cassini, and (2) the line-of-sight (LOS) constraint which is determined by the geometry

between the transmitter, target, and receiver.

1. Detection-Constrained Coverage

The coverage is determined by the area within a maximum-range oval of Cassini,

which is established by the bistatic maximum range product, κ , in a bistatic radar

system.

Depending on region of operation, i.e., the relationship between L and 2 κ ,

different expressions for the area, AB, apply. The detailed derivation of each expression

is provided in Appendix D of [3].

a. 2L κ< . A single continuous ellipse.

22 24 4

1 2 2

1 1 1 3 11
2 16 1 2 4 16 3B

L LA πκ
κ κ

 = − − −⋅⋅⋅

i
i

 (2.29)

4 8

1 2 4

1 31
64 16384B

L LA πκ
κ κ

 ≈ − −

. (2.30)

b. 2L κ> . Two separate ellipses enclosing the transmitter and receiver.

2 22 2 2 2

2 4 4 42

2 2 2 32 2 2

6 4

1 16 3 161
2 2! 2 3! 2!2

3 5 16
2 4! 3!

B

L L
A

L

L

κ κ
πκ

κ

 + +
 =
 + + ⋅⋅⋅

i i i

i
i i

 (2.31)

13

2 2 4 6

2 2 4 8 12

2 2 12 1001BA
L L L L
πκ κ κ κ

≈ + + +

. (2.32)

c. 2L κ= . A lemniscate with a cusp at the origin

 3 2BA κ= . (2.33)

Comparing a bistatic radar with maximum range product, κ , to a monostatic

radar with an equivalent monostatic range, κ , it is found that the area of coverage for a

bistatic radar is smaller than that of the monostatic radar [3].

2. Line-of-Sight-Constrained Coverage

The bistatic line-of-sight (LOS) coverage is affected by multipath, diffraction,

refraction, and shadowing, including the earth curvature. The coverage area, AC, is

established by the common area covered by both the transmitter and receiver coverage

circles, as shown in Figure 2.4. The 4/3 earth model gives radii of coverage circles as

follows

 ()130T t Tr h h= + (2.34)

 ()130R t Rr h h= + (2.35)

where

ht = target altitude (km),

hT = transmitter antenna altitude (km),

hR = receiver antenna altitude (km).

For T R TL r r L r+ > > − or R T RL r r L r+ > > − , the intersection of the two coverage

circles determines the common coverage area

 () ()2 21 sin sin
2C R R R T T TA r rφ φ φ φ = − + − (2.36)

14

where

2 2 2

12cos
2

T R
T

T

r r L
r L

φ − − +=

 (2.37)

2 2 2

12cos
2

R T
R

R

r r L
r L

φ − − +=

 (2.38)

otherwise,

 if T Rr r L+ ≤ , then 0CA = ; (2.39)

 if T Rr L r≥ + , then 2
C RA rπ= ; (2.40)

 if R Tr L r≥ + , then 2
C TA rπ= . (2.41)

Figure 2.4 Coverage area geometry. (From Ref. [3].)

F. CUTTER CELL AREA

The intersection of the range cell and the mainbeam footprint is used to determine

the bistatic mainlobe clutter cell area, Ac. It is useful to determine if a range cell is

beamwidth limited or pulsewidth limited.

15

Figure 2.5 illustrates the beamwidth limited case with clutter cell area given by

 () ()()
sin

R R T T
c b

R R
A

θ θ
β

∆ ∆
≈ . (2.42)

The terms T TR θ∆ and R RR θ∆ are the cross-range dimension of the transmitting and

receiving beam at the clutter cell, respectively. The angles Tθ∆ and Rθ∆ are the 3-dB

beamwidths of the transmitting and receiving antennas, respectively.

Figure 2.5 Beamwidth limited clutter cell area. (From Ref. [7].)

Figure 2.6 illustrates the pulsewidth limited case with clutter cell area given by

 () ()
() ()2cos / 2 2cos / 2

R R R R
c b

R c RA R
θ τ θ

β β
 ∆ ∆≈ ∆ ≈

. (2.43)

The term τ is the compressed pulsewidth, whereas R∆ is the approximation to the

bistatic range cell given by

16

 ()2cos / 2
cR τ

β
∆ ≈ . (2.44)

Figure 2.5 Pulsewidth limited clutter cell area. (From Ref. [7].)

Appendix B of Reference [3] has provided an estimation for the maximum error

of a range cell, maxε . The maximum error occurs on the perpendicular bisector of the

baseline, where β is a maximum. It is given by

 ()
()max 1

a a a
b b b

ε
′ −

= −
′ −

 (2.45)

where

a = semimajor axis of inner ellipse = () / 2T RR R+ ,

a′ = semimajor axis of outer ellipse = (/ 2)a cτ+ ,

b = semiminor axis of inner ellipse =
1

2 2 2(/ 4)a L− ,

b′ = semiminor axis of outer ellipse = ()
1

2 2 2/ 4a L ′ − .

17

G. MAXIMUM UNAMBIGUOUS RANGE AND PRF

The maximum unambiguous range for a bistatic radar is given by

 ()T R u

cR R
PRF

+ = (2.46)

and the maximum unambiguous PRF is given by

 () ()max
B u

T R

cPRF
R R

=
+

 (2.47)

 ()
()2 2 1 cos

B u

cPRF
L κ β

=
+ +

. (2.48)

H. DOPPLER RELATIONSHIP

The doppler shift, fB, is the time rate of change of the total path length of the

scattered signal, normalized by the wavelength. For bistatic radar, the doppler shift is

given by

 ()1
B T R

df R R
dtλ
 = +

 (2.49)

 1 T R
B

dR dRf
dt dtλ

 = +
. (2.50)

Figure 2.6 shows a bistatic doppler geometry. The target’s velocity vector has magnitude

V and aspect angle δ. They are being projected to the transmitter and receiver as VT, VR

and δT, δR respectively. A stationary transmitter and receiver will have the projection of

the target velocity vector onto the transmitter-to-target LOS and receiver-to-target LOS

as follows

 ()cos / 2TdR V
dt

δ β= − (2.51)

 ()cos / 2RdR V
dt

δ β= + . (2.52)

18

Figure 2.6 Bistatic doppler geometry. (From Ref. [3].)

Combining Equations (2.50), (2.51) and (2.52) yields

 () () ()/ cos / 2 cos / 2Bf V λ δ β δ β = − + + (2.53)

 () ()2 / cos cos / 2Bf V λ δ β= . (2.54)

I. ELECTRONIC COUNTERMEASURES

Bistatic radar can also be subjected to intentional interference initiated by hostile

transmissions from other sources. Thus it is essential to examine how the performance

will be affected under such an environment. When a noise jammer is employed, the radar

receiver will be subjected to the jamming power spectrum density, J0, given by

()

2 2

0 2 24
J J R J

J J J

P G G FJ
B R L

λ
π

= (2.55)

where

PJ = jammer transmitted power (W),

19

GJ = jammer transmit antenna power gain,

GR = radar receiving antenna power gain,

JF = jammer pattern propagation factor = J J RJF f f′ ,

JF ′ = propagation factor,

fJ = jammer antenna patter factor, referenced to the receiver site,

fRJ = radar receiving antenna patter factor, referenced to jammer site,

BJ = jammer bandwidth (Hz),

RJ = jammer-to-receiver range (m),

LJ = jammer system losses (≥ 1).

Assuming the case of a single jammer, substituting Equation (2.55) into (2.1), the bistatic

burn-through equation is given by

 () ()

1
22 2 2

21
min

4 /
J J B JT T T R

T R J
J J J T R n

L B RP G F FR R
P G F L L B S N

σ
π

= × × × ×

. (2.56)

J. SUMMARY

The bistatic radar equation is derived in a manner similar to the monostatic radar

range equation, with the bistatic range (RTRR)2 replacing the range R4 in the monostatic

radar case. A constant SNR plot has the shape of an oval of Cassini. By resolving the

bistatic triangle, it is possible to calculate the target location. The radar coverage is

defined by the region where the target is detectable by the receiver and within the LOS of

both transmitter and receiver. The bistatic footprint can be either beamwidth or

pulsewidth limited. Both doppler relationships and electronic countermeasures

considerations were also discussed. Chapter III uses the theory discussed in this chapter

to establish the approach for the bistatic radar simulation, and the integration of the

various software modules.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

III. SOFTWARE DESIGN APPROACH

A. OVERVIEW

Bidarsa is a bistatic radar simulation developed using the graphical user interfaces

(GUIs) available in MATLAB. The program is designed to provide easy user interfaces

for radar designers, engineers, and students to examine the various design parameters for

a bistatic radar and analyze its performance.

The bistatic radar model block diagram is shown in Figure 3.1. Eight main

modules were developed to carry out different bistatic radar system analyses as discussed

in Chapter II. Figure 3.1 also indicates the data flow sequences. It illustrates how certain

modules will need to be executed prior to the others, as their results are used in

subsequent analyses by the other modules.

The Bidarsa.m module allows a user to select one of the three group functions: (1)

specify the system parameters, (2) carry out a basic system performance analysis, or (3)

to carry out an extended system performance analysis.

The Defpara.m module provides a convenient way for a user to specify the

bistatic radar’s transmitter and receiver design parameters. It also allows target

information and the environmental information to be specified. The parameters can be

updated at any point in time to allow a new scenario to be examined, and its effect on the

overall system performance evaluated.

The RngCal.m module computes the bistatic maximum range product, bistatic

radar constant, and the maximum range-unambiguous pulse repetition frequency (PRF).

This module allows the user to carry out system analysis on four different design

parameters: (1) transmitter power, (2) system frequency, (3) target RCS, and (4) signal-

to-noise ratio. The user is also able to plot the detection contour and examine the oval of

Cassini with four different constant SNR plots.

22

Figure 3.1 Bistatic radar system analysis model block diagram.

Bistatic max range product, Detection
contour, Sys parameter analysis, PRFmax

Main
Menu

Define Parameters

Range Calculation

EW Effects

Clutter Cell Area

Target Location

Coverage Area

Doppler Relationship

Detection & LOS-constraints coverage,
Tx-Rx-Tgt altitude analysis

Beamwidth/Pulsewidth-limits, Bistatic
footprint, Range cell size, Max error

Doppler shift, Bistatic angle & Tgt
velocity aspect angle analysis

Burn-through range analysis

Tx-Tgt & Tgt-Rx range analysis, Beta
Angle calculations

Bidarsa.m

EWEff.m

DopRel.m

FotPrt.m

CovAre.m

TgtLoc.m

RngCal.m

Defpara.m

23

The TgtLoc.m module uses the range-sum value and angle θ to compute the

location of the target. It provides the transmitter-to-target and target-to-receiver ranges

and calculates the bistatic angle.

The CovAre.m module evaluates the coverage areas for both detection-constrained

and LOS-constrained cases. The module also provides an analysis on the transmitter-

target-receiver height relationship requirement, and the effects of different baseline

ranges.

The FotPrt.m module uses the transmitter-target-receiver ranges, antenna

beamwidth and transmitter pulsewidth, to evaluate the bistatic footprint and clutter area.

The module examines the results and determines if the detection is beamwidth or

pulsewidth limited. The range cell size and maximum range errors are also computed in

this module.

The DopRel.m module examines the doppler shift effects of a moving target. It

also provides an analysis of the target-velocity aspect angle versus bistatic angle, and

how they affect the doppler frequency shift.

The EWEff.m module provides a means to evaluate the bistatic radar performance

under different jammer environments. The module provides an analysis on the burn-

through range for different target RCS and jammer power scenarios.

A Help menu is provided in all modules to assist the user to navigate and

understand how to use each module.

Print and Close functions are also designed into all modules to allow the user to

make a hard copy and exit the selected menu whenever desired.

The detailed MATLAB programs for the eight modules are listed in the Appendix

of this thesis.

24

B. BIDARSA MAIN MENU

To run the Bidarsa GUI, the user has to start MATLAB and set the path of

directory to where the Bidarsa code is stored. Typing Bidarsa at the command window

will execute the GUI as shown in Figure 3.2. Among the three groupings, the user should

define the system parameters first before running the other analysis functions. An

explanation of the Bidarsa GUI may be obtained by clicking on the Help button.

Figure 3.2 Bidarsa main menu GUI.

25

C. DESIGN PARAMETERS MENU

This module is designed to collect the system parameters, target information and

environmental data. These inputs are generally required by all the other modules. It

functions as a central database for the program, and converts each parameter to a suitable

unit for subsequent computations. A pop up window is designed to inform the user that

new parameters are being loaded for any follow-on analysis. Figure 3.3 shows the GUI

layout designed for the module. A typical value for each parameter was chosen as the

default value for demonstration and initial calculation purposes.

Figure 3.3 Define parameter GUI.

26

D. RANGE CALCULATION MENU

This module is designed to carry out the most fundamental analysis for a bistatic

radar system. Several other modules use its result to carry out further analysis. Figure

3.4 shows the GUI layout designed for the module. With the input data from the

Defpara.m module, it computes the following:

1. Bistatic maximum range product, ()maxT RR R , as detailed in Equation (2.1).

2. Bistatic radar constant, K, as detailed in Equation (2.4).

3. Maximum range-unambiguous PRF, as detailed in Equation (2.48).

4. System Analysis for

 a. Transmitting power selection

 b. System frequency selection

 c. Target RCS variation

 d. Receiver SNR variation

5. Detection contour plot for ovals of Cassini, as detailed in Equation (2.9).

Figure 3.4 Range calculation GUI.

27

E. TARGET LOCATION MENU

This module is designed to estimate the location of the target using the range-sum

value and measured angle θ. Figure 3.5 shows the GUI layout designed for the module.

Only one of the angles, θT or θR, is required for the reference, as discussed in Chapter II

Section D. It computes:

1. Transmitter-to-target range, as detailed in Equations (2.16) and (2.22).

2. Target-to-receiver range, as detailed in Equations (2.17) and (2.21).

3. Bistatic beta angle, as detailed in Equations (2.26) and (2.28).

Figure 3.5 Target location GUI.

28

F. COVERAGE AREA MENU

This module is designed to evaluate the region or area on the bistatic plane where

the target is detectable by the receiver and within the LOS of both transmitter and

receiver. The user can specify a different altitude for the target, transmitter antenna, and

receiver antenna for this analysis. Figure 3.6 shows the GUI layout designed for the

module. It computes:

1. The region of operation, based on the relationship of L and 2 κ , as

discussed in Chapter II Section E.

2. Coverage area for the detection-constrained case, as detailed in Equations

(2.30), (2.32), and (2.33).

3. Coverage area for the LOS-constrained case, as detailed in Equations

(2.36), (2.39), (2.40), and (2.41).

4. System analysis for

 a. Transmitter antenna altitude requirements.

 b. Receiver antenna altitude requirements.

 c. Target altitude requirements.

 d. Baseline distance variations.

29

Figure 3.6 Coverage area GUI.

30

G. BISTATIC FOOTPRINT AND CLUTTER AREA MENU

This module is designed to evaluate the bistatic footprint and clutter area of the

bistatic radar system. The user can specify the transmitter-target-receiver ranges, antenna

beamwidth and transmitter pulse information for different analysis. Figure 3.7 shows the

GUI layout designed for the module. It computes:

1. Whether the system is a beamwidth or pulsewidth limited case.

2. The bistatic footprint area, as detailed in Equations (2.42) and (2.43).

3. The range cell size, as detailed in Equation (2.44).

4. Maximum error in the range cell, as detailed in Equation (2.45).

Figure 3.7 Clutter area GUI.

31

H. DOPPLER RELATIONSHIP MENU

This module is designed to evaluate the doppler shift effects of a moving target.

The user can provide different target velocities and aspect angles for the analysis. Figure

3.8 shows the GUI layout designed for the module. It computes:

1. Bistatic doppler shift, as detailed in Equation (2.54).

2. System analysis for

 a. Target velocity aspect angle variation.

 b. Bistatic angle variation.

 c. Bistatic doppler shift variation.

Figure 3.8 Doppler relation GUI.

32

I. EW EFFECTS MENU

This module is designed to evaluate the bistatic radar’s performance when

subjected to a jamming transmission. The user can define the jammer specifications for

simulating different operational scenarios. Figure 3.9 shows the GUI layout designed for

the module. It computes:

1. Bistatic maximum range product with jammer, as detailed in Equation

(2.56).

2. System analysis for

 a. Jammer power variation.

 b. Target RCS variation.

 c. Burn-through range analysis.

Figure 3.9 EW Effects GUI.

33

J. SUMMARY

The MATLAB GUI is used to develop the Bidarsa simulation program, as it

offers easy user interfaces and excellent data visualization. Eight modules were

developed and integrated as a complete suite. The Bidarsa program provides a user the

options to specify the bistatic radar system parameters, the target information and

environmental data. Several critical system performance measures are calculated, and

data presentation tailored to the study of design tradeoffs. The bistatic doppler

relationship and electronic countermeasures considerations are also included to provide

extended analyzes. Chapter III provides sample analyzes on a set of radar parameters.

Plots generated from the different modules will also be discussed.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

IV. DESCRIPTION OF SOFTWARE OPERATION

A. TEST DATA

To evaluate the Bidarsa program, a set of system parameters were compiled from

various published sources [1, 3] and used for a detailed system analysis. The test values

are as shown in Table 1.

Transmitting power 50 dBW

Transmitter antenna gain 30 dB

Frequency 10 GHz

Receiver min SNR 0 dBm

Receiver antenna gain 30 dB

Receiver noise temperature 300 K

Receiver noise bandwidth 60 MHz

Baseline range 100 km

Target RCS 10 dBm2

Bistatic beta angle 1 degree

Transmitter system loss 1 dB

Receiver system loss 1 dB

Tx-Tgt pattern propagation factor −3.5 dB

Tgt-Rx pattern propagation factor −3.5 dB

Table 1. Test parameters used to evaluate Bidarsa program.

36

The Bidarsa program is run and the above values are entered and updated in the Defpara

menu. The results of all module calculations are displayed in the MATLAB Command

Window.

B. BISTATIC RANGE PRODUCT ANALYSIS

Selecting the Range Calculation menu, the program computed the following

results for the three range related parameters, as shown in Figure 4.1. Selecting one of

the four system analysis buttons on the menu will generate the respective plot as shown

in Figure 4.2. When the plot detection contour button is selected, the program generates

a plot for the oval of Cassini for constant SNR at 93 dB, 96 dB, 98.65 dB and 102 dB, as

shown in Figure 4.3.

Bidarsa - Range Calculation:

Bistatic Maximum Range Product RtRr is 6.7706e+006 km2.

Bistatic Radar constant K is 4.5841e+016.

Maximum Range-Unambiguous PRF is 1.8299e+000 kHz.

Figure 4.1 Range calculation menu output.

From Equations (2.48) and (2.46), it is interesting to note that in a bistatic radar

system, increasing the bistatic angle, β, will increase the maximum range-unambiguous

PRF, which will in turn, reduce the bistatic radar maximum unambiguous range.

Figure 4.3 resembles Figure 2.3 in Reference [3]. With the system parameters

used in this analysis, the lemniscate (2L κ=) occurs when the SNR is 98.65 dB; two

separate ellipses enclosing the transmitter and receiver (2L κ>) are observed at a SNR

of 102 dB; two single continuous ellipses (2L κ<) are observed at SNRs of 93 dB and

96 dB.

37

Figure 4.2 System analysis: transmit power (top left), frequency (top right), target

RCS (bottom left) and SNR (bottom right).

Reference [3] also suggests a few possible military applications for each of the

operating regions.

1. For 2L κ> , with a small oval around the receiver, i.e., the receiver-

centered region, the system can be used for

 a. Air-to-ground operations using a stand-off transmitter and

penetrating aircraft with silent receiver.

 b. A semiactive homing missile.

38

2. For 2L κ> , with a small oval around the transmitter, i.e., the

transmitter-centered region, the system can be used for

 a. Monitoring of activity near a non-cooperative transmitter.

3. For 2L κ< , with a single continuous ellipse, the system can be used for

 a. Medium-range air defense.

 b. Missile tracking from ground-based sites.

Figure 4.3 Constant SNR oval of Cassini plot.

39

C. TARGET LOCATION ANALYSIS

In the Target Location menu, test values for the range-sum and angle θR as shown in

Table 2, are used for the evaluation. The program computed the results for the three

target location related parameters, as shown in Figure 4.4.

Range-sum ()T RR R+ 350 km

Angle θR 30 degrees

Table 2. Test values used for target location analysis.

Bidarsa - Target Location:

Theta_R Selected

Distance of Target to Transmitter is 2.0938e+002 km.

Distance of Target to Receiver is 1.4063e+002 km.

The Beta Angle calculated is 24.43 deg.

Figure 4.4 Target location menu output.

The user can toggle the angle θ entry and verify from the results that the isorange

contour has to be an ellipse, rather than the tangent approximation. The possibility of

using either θT or θR for computation offers more flexibility in the analysis.

40

D. COVERAGE AREA ANALYSIS

In the Coverage Area menu, the test values for the transmitter, receiver, and target

altitude are shown in Table 3. The program computed the following results in

determining the region of operation and the coverage areas, as shown in Figure 4.5. A

system analysis of the transmitter-receiver-target height requirement versus baseline

range is also generated as shown in Figure 4.6.

Target height 30 km

Transmitter antenna height 10 km

Receiver antenna height 10 km

Table 3. Test values used for coverage area analysis.

Bidarsa - Coverage Area:

Target is in the Single Cosite Region.

The Detection-constrained coverage area is 2.1271e+007 km2.

Rx and Tx is in LOS.

The LOS-constrained coverage area is 3.7384e+006 km2.

Figure 4.5 Coverage area menu output.

In this analysis, Figure 4.6 shows that, for a baseline range L of 100 km, an

adequate LOS is established for a target height > 700 m, only if the transmitting or

receiving antenna is > 100 m. If the baseline is decreased to 50 km (0.5L), an adequate

LOS is established for a target height > 700 m, when the antenna is near zero altitude.

However, if the range is increased to 1200 km (1.2L), to achieve an adequate LOS for

target height > 700 m, the antenna will need to be raised to at least 180 m.

41

Figure 4.6 Transmitter-target-receiver height analysis.

42

E. BISTATIC FOOTPRINT ANALYSIS

In the Bistatic Footprint & Clutter Area menu, the radar parameters as shown in Table 4

are used for the evaluation. The program determines if the bistatic footprint is limited by

beamwidth or pulsewidth, as shown in Figure 4.7. The range cell size and maximum

error were also generated.

Receiver-target range 100 km

Transmitter-to-target range 50 km

Receiver antenna beamwidth 10 degrees

Transmitter antenna beamwidth 10 degrees

Transmitter pulsewidth 30 µsec

Table 4. Test parameters for bistatic footprint analysis.

Bidarsa - Bistatic Footprint:

This is a Beamwidth Limited case.

The Bistatic Footprint is 8.7711e+002 sqr-km.

Range Cell Size is 4.5172e+003 m.

Maximum Error is 2.2164e-002 m.

Figure 4.7 Bistatic footprint menu output.

It can be gathered from the Equations (2.42) to (2.45) that the radar pulsewidth

plays a bigger role than the beamwidth in determining whether the bistatic footprint is

limited by beamwidth or pulsewidth. This effect can be verified using this module.

43

It is also verified in this module that variation in the antenna beamwidth will only

affect the beamwidth limited bistatic footprint area; it has a small effect on the range cell

size and does not affect the maximum error calculated.

F. DOPPLER RELATION ANALYSIS

In the Doppler Relation menu, the test values shown in Table 5 are used for the

evaluation. The program computes the bistatic doppler shift as shown in Figure 4.8. A

system analysis for doppler frequency shift versus different target aspect angle and

bistatic angle is generated as shown in Figure 4.9.

Target velocity 300 m/s

Target velocity aspect angle 80 degrees

Table 5. Test parameters used for doppler relationship analysis.

Bidarsa - Doppler Relation:

Bistatic Doppler Shift is 3.4597e+001 kHz.

Figure 4.8 Doppler Relation menu output.

An analysis of Figure 4.9 illustrates the following observations:

1. For all bistatic angles, β, if the target velocity aspect angle, δ, is between

90− ° and +90°, there will be a positive bistatic target doppler.

2. For all bistatic angles, β, if the target aspect angle is normal to the bistatic

bisector, δ = ±90°, there will be zero bistatic target doppler.

3. For all bistatic angles, β < 120°, if the target aspect angle is collinear with

the bistatic bisector, a maximum bistatic target doppler will occur when

0δ = ° and a minimum will occur when 180δ = ° .

44

Figure 4.9 Doppler frequency shift analysis with different target aspect angle and

bistatic angle.

45

G. ELECTRONIC COUTNERMEASURES ANALYSIS

In the EW Effects menu, the jammer specifications shown in Table 6 are used for

the evaluation. The program computes the bistatic maximum range product with

jamming as shown in Figure 4.10. A system analysis for the burn-through ranges with

different jammer transmit powers and target RCS is generated in Figure 4.11.

Jammer transmitted power 30 dBW

Jammer antenna gain 5 dB

Jammer propagation factor 1 dB

Jammer bandwidth 1000 MHz

Jammer-receiver range 100 km

Jammer system loss 3 dB

Table 6. Test parameters used for electronic countermeasures analysis

Bidarsa - EW Effects:

Bistatic Max Range Product with Jamming (RtRr)j is 3.6418e+008 km2.

Figure 4.10 EW Effects menu output.

46

Figure 4.11 Burn-through range analysis with different target RCS.

H. SUMMARY

A set of radar parameters was used to demonstrate the simulation and analysis

capability provided by the Bidarsa program. The simulation results from the different

modules were discussed along with their respective plots. The Bidarsa program offers

flexibility for the user to study how the individual parameters will affect the overall

system performance. Chapter V presents more examples to illustrate how the Bidarsa

program can be used to study specific bistatic configurations and scenarios.

47

V. SAMPLE SYSTEMS ANALYSIS

A. OVERVIEW

Chapter IV has shown the various components of the software simulation and

analysis offered by the Bidarsa program. In this chapter, the use of the Bidarsa program

is further illustrated with two specific bistatic radar applications.

B. MONITORING OF SHIPPING CHANNEL

Chapter 13 of Reference [3] has provided a scenario whereby an aircraft uses a

bistatic radar system to monitor the shipping across a channel. A 1-GHz, 1-W

transmitting buoy is dropped in a shipping channel such that ships must pass within 1 km

of it. The aircraft is flying directly overhead listening for the echoes with a receiving

antenna gain of 20 dB. The buoy has a unity antenna gain and the aircraft receiver

requires a detection signal strength of −130 dBW. The bistatic RCS of a ship is 30

dBsm, and all the losses and multipath effects are neglected.

The above parameters were entered into the Bidarsa program for the analysis.

The results are tabulated as shown in Table 7.

Bistatic maximum range product, RtRr 6.7359 km2

Bistatic radar constant, K 4.5372e-006

Distance of target-to-transmitter 1 km

Distance of target-to-receiver 6.7359 km

Beta angle 82.17 degrees

Table 7. Results for shipping-channel example.

The above bistatic radar result was used to compare its performance to an aircraft

using monostatic radar in the same scenario. The transmitting antenna is assumed to

48

have a unity gain for consistency. The monostatic radar will give a maximum detection

range of only 2.595 km, due to the factor of R4 in the monostatic radar range equation.

The bistatic radar system in this application has a range advantage over the monostatic

radar.

This comparison has implied that by using the bistatic radar configuration, the

aircraft could fly at a much higher altitude to monitor the shipping channel without being

detected. On the other hand, if the monostatic radar uses a higher gain antenna, it will

make up for the monostatic R4 factor and require less transmitting power for the same

range performance. However, the monostatic radar configuration, being an active

system, might possibly give away the position of the aircraft.

The transmitting power, system frequency, target RCS, and SNRmin versus

maximum range product are shown in Figure 5.1.

Figure 5.1 System analysis for shipping-channel example: transmit power (top left),

frequency (top right), target RCS (bottom left) and SNR (bottom right).

49

Depending on the requirements of the aircraft operation profile, Figure 5.1

illustrates the tradeoffs in the system design parameters, so as to achieve a higher

probability of detection and aircraft survivability.

C. NPS BISTATIC RADAR EXPERIMENT

An experiment was conducted at the Naval Postgraduate School (NPS) in 1997 to

investigate the feasibility of using direct television broadcast satellites and ground-based

bistatic receivers to detect targets [4]. With the Hughes Direct Broadcast Satellite (DBS-

1) used to illuminate the target, receive signals from the direct path antenna and bistatic

receive antenna were compared and processed to detect the presence of targets. The

system configuration is shown in Figure 5.2.

The system parameters used for the experiment are as shown in Table 8. The

parameters were entered into the Bidarsa program for the analysis. The resulting bistatic

maximum range product is 74543 km2, and the estimated RR is approximately 2 km.

This is in agreement with the result obtained in the experiment conducted.

Figure 5.2 NPS bistatic radar experiment configuration.

Bistatic receiver
antenna

Direct path
antenna

Receiver and Processor

Direct
Path

RR

Satellite

RT

Target

50

Effective radiated power of DBS-1, PTGT 53 dBW

Transmitting frequency, f 12.7 GHz

Effective aperture of receiver antenna, Ae 0.16 m2

Processor gain of radar, GP 61 dB

Receiver bandwidth, Bn 45 MHz

Minimum SNR required for detection, (S/N)min 13 dB

Distance between transmitter and receiver, L 37000 km

Target bistatic RCS, σB 30 dBsm

Two way Losses, LtLr 6 dB

Table 8. System parameters for the NPS bistatic radar experiment.

The experimental result confirmed the feasibility of the concept, and suggested

several improvement factors [4] that could employed to increase the detection range.

They are:

1. Using of low-noise receiver to improve the SNR.

2. Increase the receiver antenna area and gain.

3. Increase the effective radiated power on the transmitting satellite.

4. Using multiple receivers to increase the processing gain.

It is important to take note that in the bistatic-radar-satellite-hitchhiker system, each 6-dB

increase in SNR doubles the receiver-to-target range, RR. This is much better than the

monostatic system, whereby it takes a 12-dB increase in SNR to double the detection

range.

51

D. SUMMARY

In this chapter, two different applications were presented and the Bidarsa program

was used to carry out the system performance prediction. The results were analyzed and

compared with the monostatic radar system. Recommendations were also discussed to

improve the system performance. The final chapter will present a overall summary of

this thesis and suggest possible follow up work.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

Bistatic radar offers many advantages over monostatic radar in certain

applications, since the receiving antenna is at a distant site with reference to the

transmitting antenna. This thesis achieved the objective of developing a software model

for bistatic radar systems. The software allows a user to examine the various system

design parameters and evaluate the system performance tradeoffs, under different

conditions and scenarios, in a simulated environment.

MATLAB GUI is chosen as the software to develop the Bidarsa simulation

program because it is an effective interactive tool for both numerical computation and

data visualization. It also allows a very user-friendly interface to be designed and

operated.

The Bidarsa program is easy to learn and navigate with Help menus designed to

guide the user in every module. It is suitable to be used by any engineering student or

professionals who are interested in the bistatic radar field.

With the current operation trends toward a lower signature target and the third

resurgence for bistatic radar using Passive Coherent Location [8], the bistatic radar offers

a much greater potential now than at any time before. The Bidarsa program will help

engineering students to understand the fundamental design principles of bistatic radar,

and provide a convenient tool for the professional in this field to analyze the system

performance. The software is available free of charge and can be downloaded from

www.nps.navy.mil/jenn.

B. RECOMMENDATIONS

While this thesis focused on the effort to develop a software model to evaluate the

essential performance of a bistatic radar system, there are other areas that could be

examined to provide a more advanced analysis to predict the bistatic radar performance.

They include:

54

1. Examine the effects of bistatic RCS for surface clutter, which consists of

both ground and sea echoes.

2. Clutter tuning concepts that cater to a moving transmitting and receiver.

3. Pulse chasing concepts to reduce the complexity and cost of multibeam

bistatic receivers.

4. Passive Coherent Location (PCL) considerations [8], such as the

CELLDAR concept shown in Figure 6.1. CELLDAR is a passive system based on the

bistatic radar principle. It works by using existing transmissions made by digital cell

phone base stations. When a target object enters the detection region, these cell phone

transmissions are reflected by it and detected at the CELLAR antennas.

Figure 6.1 CELLDAR concept of operation proposed by Roke Manor. (From Ref.
[9].)

55

APPENDIX

A. MATLAB CODE FOR BIDARSA.M

This appendix details the Bidarsa.m code developed to allow a user to select one

of the three group functions: (1) specify the system parameters, (2) carry out a basic

system performance analysis, or (3) carry out an extended system performance analysis.

function varargout = Bidarsa(varargin)
% BIDARSA M-file for Bidarsa.fig
% BIDARSA, by itself, creates a new BIDARSA or raises the existing
% singleton*.
% H = BIDARSA returns the handle to a new BIDARSA or the handle to
% the existing singleton*.
% BIDARSA('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in BIDARSA.M with the given input arguments.
% BIDARSA('Property','Value',...) creates a new BIDARSA or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Bidarsa_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Bidarsa_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help Bidarsa
% Last Modified by GUIDE v2.5 20-Oct-2003 17:08:59
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Bidarsa_OpeningFcn, ...
 'gui_OutputFcn', @Bidarsa_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

56

% --- Executes just before Bidarsa is made visible.
function Bidarsa_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
clear all;
clc;

% --- Outputs from this function are returned to the command line.
function varargout = Bidarsa_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

%**
% --- Executes on button press in pushbutton00.
function pushbutton00_Callback(hObject, eventdata, handles)
Defpara

% --- Executes on button press in pushbutton11.
function pushbutton11_Callback(hObject, eventdata, handles)
RngCal

% --- Executes on button press in pushbutton12.
function pushbutton12_Callback(hObject, eventdata, handles)
TgtLoc

% --- Executes on button press in pushbutton13.
function pushbutton13_Callback(hObject, eventdata, handles)
CovAre

% --- Executes on button press in pushbutton14.
function pushbutton14_Callback(hObject, eventdata, handles)
FotPrt

% --- Executes on button press in pushbutton21.
function pushbutton21_Callback(hObject, eventdata, handles)
DopRel

% --- Executes on button press in pushbutton31.
function pushbutton31_Callback(hObject, eventdata, handles)
EWEff
%**

57

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
close all hidden

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpMain
%**

58

B. MATLAB CODE FOR DEFPARA.M

This appendix details the Defpara.m code developed to provide a convenient way

for user to specify the bistatic radar’s transmitter and receiver design parameters, the

target information and the environmental information.

function varargout = Defpara(varargin)
% DEFPARA M-file for Defpara.fig
% DEFPARA, by itself, creates a new DEFPARA or raises the existing
% singleton*.
% H = DEFPARA returns the handle to a new DEFPARA or the handle to
% the existing singleton*.
% DEFPARA('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DEFPARA.M with the given input arguments.
% DEFPARA('Property','Value',...) creates a new DEFPARA or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Defpara_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Defpara_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help Defpara
% Last Modified by GUIDE v2.5 24-Oct-2003 01:25:10
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Defpara_OpeningFcn, ...
 'gui_OutputFcn', @Defpara_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Defpara is made visible.
function Defpara_OpeningFcn(hObject, eventdata, handles, varargin)

59

handles.output = hObject;
guidata(hObject, handles);
clc;

% --- Outputs from this function are returned to the command line.
function varargout = Defpara_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function Pt_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Pt_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Gt_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Gt_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Fq_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Fq_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function SN_input_CreateFcn(hObject, eventdata, handles)
if ispc

60

 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function SN_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Gr_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Gr_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Ts_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Ts_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Bn_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Bn_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Br_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else

61

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Br_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Sm_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Sm_input_Callback(hObject, eventdata, handles)

function Ba_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Ba_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Ft_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Ft_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Fr_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

62

function Fr_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Lt_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Lt_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Lr_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Lr_input_Callback(hObject, eventdata, handles)

%**
% --- Executes on button press in Update.
function Update_Callback(hObject, eventdata, handles)
global Pt_00 Gt_00 Fq_00 SN_00 Pt_00 Gr_00 Ts_00 Bn_00 Br_00...
 Sm_00 Ba_00 Ft_00 Fr_00 Lt_00 Lr_00 Lambda_00
clc;
Pt_input = eval(get(handles.Pt_input,'String'));
Gt_input = eval(get(handles.Gt_input,'String'));
Fq_input = eval(get(handles.Fq_input,'String'));
SN_input = eval(get(handles.SN_input,'String'));
Gr_input = eval(get(handles.Gr_input,'String'));
Ts_input = eval(get(handles.Ts_input,'String'));
Bn_input = eval(get(handles.Bn_input,'String'));
Br_input = eval(get(handles.Br_input,'String'));
Sm_input = eval(get(handles.Sm_input,'String'));
Ba_input = eval(get(handles.Ba_input,'String'));
Ft_input = eval(get(handles.Ft_input,'String'));
Fr_input = eval(get(handles.Fr_input,'String'));
Lt_input = eval(get(handles.Lt_input,'String'));
Lr_input = eval(get(handles.Lr_input,'String'));

63

Pt_00 = 10^(Pt_input/10);
Gt_00 = 10^(Gt_input/10);
Fq_00 = Fq_input*1e9;
SN_00 = (10^((SN_input-30)/10));
Ba_00 = deg2rad(Ba_input);
Gr_00 = 10^(Gr_input/10);
Ts_00 = Ts_input;
Bn_00 = Bn_input*1e6;
Br_00 = Br_input;
Sm_00 = 10^(Sm_input/10);
Ft_00 = 10^(Ft_input/10);
Fr_00 = 10^(Fr_input/10);
Lt_00 = 10^(Lt_input/10);
Lr_00 = 10^(Lr_input/10);

Lambda_00 = 3e8/(Fq_00); %System Wavelength
mb0 = msgbox([' New bistatic radar parameters loaded. '],'Result');
%**

% --- Executes on button press in Print.
function Print_Callback(hObject, eventdata, handles)
printdlg('-setup',handles.figure1)

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
delete(handles.figure1)

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpDefpara
%**

64

C. MATLAB CODE FOR RNGCAL.M

This appendix details the Rngcal.m code developed to compute the bistatic

maximum range product, bistatic radar constant, maximum range-unambiguous PRF,

plotting of the detection contour, and carry out system analysis on four design

parameters.

function varargout = RngCal(varargin)
% RNGCAL M-file for RngCal.fig
% RNGCAL, by itself, creates a new RNGCAL or raises the existing
% singleton*.
% H = RNGCAL returns the handle to a new RNGCAL or the handle to
% the existing singleton*.
% RNGCAL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in RNGCAL.M with the given input arguments.
% RNGCAL('Property','Value',...) creates a new RNGCAL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before RngCal_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to RngCal_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help RngCal
% Last Modified by GUIDE v2.5 06-Nov-2003 08:56:10
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @RngCal_OpeningFcn, ...
 'gui_OutputFcn', @RngCal_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

65

% --- Executes just before RngCal is made visible.
function RngCal_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
clc;
axes(handles.axes1);
[x1,map] = imread('z-Range.jpg','jpg');
image(x1);
colormap(map);
set(handles.axes1,'Visible','off');
global PowP FreP RCSP SNRP
PowP = 0;
FreP = 0;
RCSP = 0;
SNRP = 0;

% --- Outputs from this function are returned to the command line.
function varargout = RngCal_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% --- Executes on mouse press over figure background, over a disabled or
% --- inactive control, or over an axes background.
function figure1_WindowButtonDownFcn(hObject, eventdata, handles)

% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)

%**
% --- Executes on button press in Calculate.
function Calculate_Callback(hObject, eventdata, handles)
global Pt_00 Gt_00 Fq_00 SN_00 Pt_00 Gr_00 Ts_00 Bn_00 Br_00...
 Sm_00 Ba_00 Ft_00 Fr_00 Lt_00 Lr_00 Lambda_00 RtRr11 BRP11...
 PowP FreP RCSP SNRP ConP
clc;
k = 1.38065*10^(-23);
Num11 = (Pt_00*Gt_00*Gr_00*Lambda_00^2*Sm_00*Ft_00^2*Fr_00^2);
Den11 = ((4*pi)^3*k*Ts_00*Bn_00*SN_00*Lt_00*Lr_00);
RtRr11 = ((Num11/Den11)^(0.5))/1000; %Bistatic Max Range Product in km
Den12 = ((4*pi)^3*k*Ts_00*Bn_00*Lt_00*Lr_00);
BRP11 = (Num11/Den12); %Bistatic Radar Parameter in km
PRFu11 = 3e8/((Br_00^2+(2*(RtRr11*1000)*(1+cos(Ba_00))))^0.5);
PRFu12 = PRFu11/1000;

66

fprintf('\nBidarsa - Range Calculation:\n');
fprintf('Bistatic Maximum Range Product RtRr is %-8.4e km^2.\n',RtRr11);
fprintf('Bistatic Radar constant K is %-8.4e.\n\n',BRP11);
fprintf('Maximum Range-Unambiguous PRF is %-8.4e kHz.\n\n',PRFu12);

%**
close(figure(1));
%Plotting Transmit Power Analysis
if (PowP==1)
 Pt_11 = (Pt_00/10):(Pt_00/10):(Pt_00*10);
 Num111 = (Gt_00.*Pt_11*Gr_00*Lambda_00^2*Sm_00*Ft_00^2*Fr_00^2);
 Den111 = ((4*pi)^3*k*Ts_00*Bn_00*SN_00*Lt_00*Lr_00);
 RtRr111 = (((Num111./Den111).^(0.5))/1000); %Bistatic Max Range Product in km
 Pt_112 = 10.*log10(Pt_11);
 figure(1);
 plot(RtRr111,Pt_112);
 title('Transmit Power Analysis');
 xlabel('Max Range Product (km^2)');
 ylabel('Transmit Power (dBW)');
 grid on;
end

%Plotting Tansmit Frequency Analysis
if (FreP==1)
 Fq_12 = (Fq_00-5e9):(Fq_00/10):(Fq_00+5e9);
 Lambda_12 = 3e8./Fq_12;
 Num121 = (Pt_00*Gt_00*Gr_00.*Lambda_12.^2*Sm_00*Ft_00^2*Fr_00^2);
 Den121 = ((4*pi)^3*k*Ts_00*Bn_00*SN_00*Lt_00*Lr_00);
 RtRr121 = (((Num121./Den121).^(0.5))/1000); %Bistatic Max Range Product in km
 Fq_121 = Fq_12./1e9;
 figure(1);
 plot(RtRr121,Fq_121);
 title('Transmit Frequency Analysis');
 xlabel('Max Range Product (km^2)');
 ylabel('Freq (GHz)');
 grid on;
end

%Plotting Target RCS Analysis
if (RCSP==1)
 Sm_13 = (Sm_00/10):(Sm_00/10):(Sm_00*10);
 Num131 = (Pt_00*Gt_00*Gr_00*Lambda_00^2.*Sm_13*Ft_00^2*Fr_00^2);
 Den131 = ((4*pi)^3*k*Ts_00*Bn_00*SN_00*Lt_00*Lr_00);
 RtRr131 = (((Num131./Den131).^(0.5))/1000); %Bistatic Max Range Product in km

67

 Sm_121 = 10.*log10(Sm_13);
 figure(1);
 plot(RtRr131,Sm_121);
 title('Target RCS Analysis');
 xlabel('Max Range Product (km^2)');
 ylabel('Target RCS (dBsm)');
 grid on;
end

%Plotting Receiver SNR Analysis
if (SNRP==1)
 SN_14 = (SN_00/10):(SN_00/10):(SN_00*10);
 Num141 = (Pt_00*Gt_00*Gr_00*Lambda_00^2*Sm_00*Ft_00^2*Fr_00^2);
 Den141 = ((4*pi)^3*k*Ts_00*Bn_00.*SN_14*Lt_00*Lr_00);
 RtRr141 = (((Num141./Den141).^(0.5))/1000); %Bistatic Max Range Product in km
 SN_141 = (10.*log10(SN_14))+30; %Converting dB to dBm
 figure(1);
 plot(RtRr141,SN_141);
 title('SNR_{(min)} Analysis');
 xlabel('Max Range Product (km^2)');
 ylabel('SNR_{(min)} (dBm)');
 grid on;
end

%**
% --- Executes on button press in Pow_plot_input.
function Pow_plot_input_Callback(hObject, eventdata, handles)
set(hObject, 'Value', 1); %Turn this button on
set(handles.Fre_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.RCS_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.SNR_plot_input, 'Value', 0); %Turn off all the buttons
global PowP FreP RCSP SNRP
PowP = 1;
FreP = 0;
RCSP = 0;
SNRP = 0;

% --- Executes on button press in Fre_plot_input.
function Fre_plot_input_Callback(hObject, eventdata, handles)
set(hObject, 'Value', 1); %Turn this button on
set(handles.Pow_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.RCS_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.SNR_plot_input, 'Value', 0); %Turn off all the buttons
global PowP FreP RCSP SNRP
PowP = 0; %get(handles.Pow_plot_input, 'Value');

68

FreP = 1; %get(hObject,'Value');
RCSP = 0;
SNRP = 0;

% --- Executes on button press in RCS_plot_input.
function RCS_plot_input_Callback(hObject, eventdata, handles)
set(hObject, 'Value', 1); %Turn this button on
set(handles.Pow_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.Fre_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.SNR_plot_input, 'Value', 0); %Turn off all the buttons
global PowP FreP RCSP SNRP
PowP = 0;
FreP = 0;
RCSP = 1;
SNRP = 0;

% --- Executes on button press in SNR_plot_input.
function SNR_plot_input_Callback(hObject, eventdata, handles)
set(hObject, 'Value', 1); %Turn this button on
set(handles.Pow_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.Fre_plot_input, 'Value', 0); %Turn off all the buttons
set(handles.RCS_plot_input, 'Value', 0); %Turn off all the buttons
global PowP FreP RCSP SNRP
PowP = 0;
FreP = 0;
RCSP = 0;
SNRP = 1;

% --- Executes on button press in Con_plot_input.
function Con_plot_input_Callback(hObject, eventdata, handles)
close(figure(2));
Calculate_Callback;
Cass

%**
% plot ovals of cassini for bistatic radar SNR
function Cass
global BRP11 Br_00
rad=pi/180;
i=0;
L=Br_00;
K=BRP11;
delt=.1;
a0 = 10*log10(16*K/(L^4));
a1 = round(a0);

69

am6 = a1-6;
am3 = a1-3;
ap3 = a1+3;
snr=[am6 am3 a0 ap3];

for isnr=1:length(snr)
 SNR=10^(snr(isnr)/10);
 i=i+1; k=0;
% setup for b~=a
 a=L/2; b4=K/SNR; b=b4^(.25);

if b>=a
 for thd=0:delt:360
 thr=thd*rad;
 % b>a is one curve
 if b>a
 k=k+1;
 T(k)=thr;
 Rsq=a^2*(cos(2*thr)+sqrt(cos(2*thr)^2-1+(b/a)^4));
 r1(k)=sqrt(Rsq);
 r2(k)=0;
 end
 % b=a is lemniscate
 if b==a,
 k=k+1;
 T(k)=thr;
 Rsq=a^2*2*cos(2*thr); r1(k)=sqrt(Rsq); r2(k)=0;
 end
 end
 figure(2)
 if i==1, hold on; plot(-a,0,'or',a,0,'or'); end
 X=r1.*cos(T); Y=r1.*sin(T);
 plot(X,Y);
end
end
clear r1 r2 T X Y
% b<a is two curves
% this covers b<a in which case 8 separate curves are generated
if b<a
 for curv=1:4
 th1=[0 90 180 270]; %lower limit
 th2=[90 180 270 360]; %upper limit
 k=0;
 % decrease angle increment for these small curves
 for thd=th1(curv):delt/10:th2(curv)
 thr=thd*rad;

70

 R1sq=a^2*(cos(2*thr)+sqrt(cos(2*thr)^2-1+(b/a)^4));
 R2sq=a^2*(cos(2*thr)-sqrt(cos(2*thr)^2-1+(b/a)^4));
 R1=sqrt(R1sq); R2=sqrt(R2sq);
 if imag(R1)==0 & imag(R2)==0 %R1~= conj(R2)
 k=k+1;
 T(k)=thr;
 r1(k)=(R1); r2(k)=(R2);
 end
 end
 figure(2); X=r1.*cos(T); Y=r1.*sin(T);
 plot(X,Y);
 clear X Y
 if i==1, hold on; end
 X=r2.*cos(T); Y=r2.*sin(T);
 plot(X,Y);
 grid on;
 clear r1 r2 T X Y
 end
end
title('Detection Contours Analysis - Ovals of Cassini');
xlabel('Range (km)');
ylabel('Range (km)');
axes('position', [0 0 1 1],'visible','off');
text(0.31,0.48,'Tx');
text(0.70,0.48,'Rx');
hold off
fprintf('Ovals of Cassini illustrate the contour plots for S/N at:\n');
fprintf('%-4.2fdB, %-4.2fdB, %-4.2fdB & %-4.2fdB.\n\n',am6, am3, a0, ap3);
%**

% --- Executes on button press in Print.
function Print_Callback(hObject, eventdata, handles)
printdlg('-setup',handles.figure1)

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
delete(handles.figure1)
close(figure(1))
close(figure(2))

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpRngCal
%**

71

D. MATLAB CODE FOR TGTLOC.M

This appendix details the TgtLoc.m code developed to compute the location of the

target.

function varargout = TgtLoc(varargin)
% TGTLOC M-file for TgtLoc.fig
% TGTLOC, by itself, creates a new TGTLOC or raises the existing
% singleton*.
% H = TGTLOC returns the handle to a new TGTLOC or the handle to
% the existing singleton*.
% TGTLOC('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in TGTLOC.M with the given input arguments.
% TGTLOC('Property','Value',...) creates a new TGTLOC or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before TgtLoc_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to TgtLoc_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help TgtLoc
% Last Modified by GUIDE v2.5 29-Oct-2003 15:06:14
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @TgtLoc_OpeningFcn, ...
 'gui_OutputFcn', @TgtLoc_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before TgtLoc is made visible.
function TgtLoc_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;

72

guidata(hObject, handles);
global TR TT
axes(handles.axes1);
[x1,map] = imread('z-TgtLoc.jpg','jpg');
image(x1);
colormap(map);
set(handles.axes1,'Visible','off');
TR = 1;
TT = 0;

% --- Outputs from this function are returned to the command line.
function varargout = TgtLoc_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function BR_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function BR_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function TR_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function TR_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function TA_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

73

function TA_input_Callback(hObject, eventdata, handles)

% --- Executes on button press in Theta_R_input.
function Theta_R_input_Callback(hObject, eventdata, handles)
set(hObject, 'Value', 1); %Turn this button on
set(handles.Theta_T_input, 'Value', 0); %Turn off all the buttons
global TR TT
TR = get(hObject,'Value');
TT = get(handles.Theta_T_input, 'Value');

% --- Executes on button press in Theta_T_input.
function Theta_T_input_Callback(hObject, eventdata, handles)
set(hObject, 'Value', 1); %Turn this button on
set(handles.Theta_R_input, 'Value', 0); %Turn off all the buttons
global TR TT
TR = get(handles.Theta_R_input, 'Value');
TT = get(hObject,'Value');

%**
% --- Executes on button press in Calculate.
function Calculate_Callback(hObject, eventdata, handles)
global Br_00 TR TT
clc;
TR_input = eval(get(handles.TR_input,'String'));
TA_input = eval(get(handles.TA_input,'String'));

BR_21 = Br_00; %Base Range in km
TR_21 = TR_input;
TA_21 = deg2rad(TA_input);

Elli = BR_21/TR_21;
Num21 = BR_21*(1 - Elli^2);
Den21 = 2*Elli*(1 + Elli * sin(TA_21));
Rr21 = Num21/Den21; %Tgt Range to Tx in km
Num22 = BR_21*(Elli^2 + 1 + (2*Elli*sin(TA_21)));
Rt21 = Num22/Den21; %Tgt Range to Rx in km

Den23 = 2*Elli*(1 - Elli * sin(TA_21));
Rt22 = Num21/Den23;
Num24 = BR_21*(Elli^2 + 1 - (2*Elli*sin(TA_21)));
Rr22 = Num24/Den23;

fprintf('\nBidarsa - Target Location:\n');

74

if TR>=TT
 Rt23 = Rt21;
 Rr23 = Rr21;
 Bet_21 = asin(BR_21/Rt23*cos(TA_21));
 fprintf('Theta_R Selected\n');
else
 Rt23 = Rt22;
 Rr23 = Rr22;
 Bet_21 = asin(BR_21/Rr23*cos(TA_21));
 fprintf('Theta_T Selected\n');
end
fprintf('Distance of Target to Transmitter is %-8.4e km.\n',Rt23);
fprintf('Distance of Target to Receiver is %-8.4e km.\n',Rr23);

Bet_22 = rad2deg(Bet_21);
fprintf('The Beta Angle calculated is %-0.2f deg.\n\n', Bet_22);
%**

% --- Executes on button press in Print.
function Print_Callback(hObject, eventdata, handles)
printdlg('-setup',handles.figure1)

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
delete(handles.figure1)

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpTgtLoc
%**

75

E. MATLAB CODE FOR COVARE.M

This appendix details the CovAre.m code developed to evaluate the coverage

areas of both detection-constrained and LOS-constrained cases.

function varargout = CovAre(varargin)
% COVARE M-file for CovAre.fig
% COVARE, by itself, creates a new COVARE or raises the existing
% singleton*.
% H = COVARE returns the handle to a new COVARE or the handle to
% the existing singleton*.
% COVARE('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in COVARE.M with the given input arguments.
% COVARE('Property','Value',...) creates a new COVARE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before CovAre_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to CovAre_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help CovAre
% Last Modified by GUIDE v2.5 23-Oct-2003 11:49:58
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @CovAre_OpeningFcn, ...
 'gui_OutputFcn', @CovAre_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before CovAre is made visible.
function CovAre_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;

76

guidata(hObject, handles);
axes(handles.axes1);
[x1,map] = imread('z-Centerr.jpg','jpg');
image(x1);
colormap(map);
set(handles.axes1,'Visible','off');

axes(handles.axes2);
[x2,map] = imread('z-Centert.jpg','jpg');
image(x2);
colormap(map);
set(handles.axes2,'Visible','off');

axes(handles.axes3);
[x3,map] = imread('z-Centerc.jpg','jpg');
image(x3);
colormap(map);
set(handles.axes3,'Visible','off');

axes(handles.axes4);
[x4,map] = imread('z-LOS.jpg','jpg');
image(x4);
colormap(map);
set(handles.axes4,'Visible','off');

% --- Outputs from this function are returned to the command line.
function varargout = CovAre_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function Htg_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Htg_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Htx_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');

77

else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Htx_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Hrx_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Hrx_input_Callback(hObject, eventdata, handles)

%**
% --- Executes on button press in Calculate.
function Calculate_Callback(hObject, eventdata, handles)
global RtRr11 Br_00
clc;
Htg_input = eval(get(handles.Htg_input,'String'));
Htx_input = eval(get(handles.Htx_input,'String'));
Hrx_input = eval(get(handles.Hrx_input,'String'));

Htg_31 = Htg_input; %Height in km
Htx_31 = Htx_input;
Hrx_31 = Hrx_input;
BMRP31 = RtRr11; %Bistatic Max Range Parameter in km
BR31 = Br_00; %Base Range in km
TEST = 2*sqrt(BMRP31);
TEST2 = abs(BR31-TEST);
TEST3 = TEST2/BR31;

%**
fprintf('\nBidarsa - Coverage Area:\n');
if (TEST3<=0.1) %Check if L~=2sqrt(k)
 Ab31 = pi*BMRP31; %Area in km^2
 fprintf('Target is in the Lemniscate Region.\n');
elseif (BR31<TEST)
 Ab31 = pi*BMRP31*(1 - (BR31^4/BMRP31^2/64) - (3*BR31^8/BMRP31^4/16384));
 fprintf('Target is in the Single Cosite Region.\n');
else (BR31>TEST)

78

 Ab31 = (2*pi*BMRP31^2/BR31^2)*(1 + (2*BMRP31^2/BR31^4) + ...
 (12*BMRP31^4/BR31^8) + (100*BMRP31^6/BR31^12));
 fprintf('Target is in the Two separate Ellipses Region.\n');
end
fprintf('The Detection-constrained coverage area is %-8.4e km^2.\n\n',Ab31);

%**
Rr31 = 130*(sqrt(Htg_31) + sqrt(Hrx_31)); %Range in km
Rt31 = 130*(sqrt(Htg_31) + sqrt(Htx_31));
Theta_r = 2*acos((Rr31^2 - Rt31^2 + BR31^2)/(2*Rr31*BR31));
Theta_t = 2*acos((Rt31^2 - Rr31^2 + BR31^2)/(2*Rt31*BR31));

if (Rt31>=(BR31+Rr31))
 Ac31 = pi*Rr31^2; %Area in km^2
 fprintf('Tx coverage includes all Rx coverage circle.\n');
elseif (Rr31>=(BR31+Rt31))
 Ac31 = pi*Rt31^2;
 fprintf('Rx coverage includes all Tx coverage circle.\n');
elseif ((Rr31+Rt31)>=BR31) %Area in km^2
 Ac31 = 0.5*((Rr31^2*(Theta_r - sin(Theta_r))) + ...
 (Rt31^2*(Theta_t - sin(Theta_t))));
 fprintf('Rx and Tx is in LOS.\n');
else
 Ac31 = 0
 fprintf('No LOS between Rx and Tx.\n')
end
fprintf('The LOS-constrained coverage area is %-8.4e km^2.\n\n',Ac31);

%**
close(figure(1));
%Plotting Transmitter-Target-Receiver Height Analysis
BMRP32 = RtRr11*1e3; %Bistatic Max Range Parameter in m
BR32 = Br_00*1e3; %Base Range in m
for L= [(0.5*BR32) BR32 (1.2*BR32)]
 n=0;
for ht=50:5:1000 %target heigth in m
 n=n+1;
 hrm=(((BMRP32+L^2/4)^0.5+L/2)/130-sqrt(ht*1e3))^2;
 hr=hrm/1000;
 Ht(n)=ht;
 Hr(n)=hr;
end
figure(1)
plot(Ht,Hr,'-'), hold on

79

title('Target Height Analysis');
xlabel('Target Altitude (m)')
ylabel('Tx or Rx Antenna Altitude (m)')
grid on
end
axes('position', [0 0 1 1],'visible','off');
text(0.30,0.15,'0.5*L');
text(0.48,0.20,'L');
text(0.68,0.26,'1.2*L');
hold off
%**

% --- Executes on button press in Print.
function Print_Callback(hObject, eventdata, handles)
printdlg('-setup',handles.figure1)

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
delete(handles.figure1)
close(figure(1))

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpCovAre
%**

80

F. MATLAB CODE FOR FOTPRT.M

This appendix details the ForPrt.m code developed to evaluate the bistatic

footprint and clutter area.

function varargout = FotPrt(varargin)
% FOTPRT M-file for FotPrt.fig
% FOTPRT, by itself, creates a new FOTPRT or raises the existing
% singleton*.
% H = FOTPRT returns the handle to a new FOTPRT or the handle to
% the existing singleton*.
% FOTPRT('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in FOTPRT.M with the given input arguments.
% FOTPRT('Property','Value',...) creates a new FOTPRT or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before FotPrt_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to FotPrt_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help FotPrt
% Last Modified by GUIDE v2.5 20-Oct-2003 17:10:38
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @FotPrt_OpeningFcn, ...
 'gui_OutputFcn', @FotPrt_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before FotPrt is made visible.
function FotPrt_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;

81

guidata(hObject, handles);
axes(handles.axes1);
[x,map] = imread('z-BWLimit.jpg','jpg');
image(x);
colormap(map);
set(handles.axes1,'Visible','off');

axes(handles.axes2);
[y,map] = imread('z-PWLimit.jpg','jpg');
image(y);
colormap(map);
set(handles.axes2,'Visible','off');

% --- Outputs from this function are returned to the command line.
function varargout = FotPrt_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function Htx_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Htx_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Hrx_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Hrx_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Rr_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else

82

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Rr_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Rt_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Rt_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Rx_BW_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Rx_BW_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Tx_BW_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Tx_BW_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function PusWid_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

83

function PusWid_input_Callback(hObject, eventdata, handles)

%**
% --- Executes on button press in Calculate.
function Calculate_Callback(hObject, eventdata, handles)
global Ba_00 Br_00
clc;
Rrx_input = eval(get(handles.Rr_input,'String'));
Rtx_input = eval(get(handles.Rt_input,'String'));
RBW_input = eval(get(handles.Rx_BW_input,'String'));
TBW_input = eval(get(handles.Tx_BW_input,'String'));
PuW_input = eval(get(handles.PusWid_input,'String'));

Bet_41 = Ba_00; %Beta Angle in rad
Rrx_41 = Rrx_input;
Rtx_41 = Rtx_input;
RBW_41 = deg2rad(RBW_input);
TBW_41 = deg2rad(TBW_input);
PuW_41 = PuW_input*10^-6;

Num41 = Rrx_41*RBW_41*Rtx_41*TBW_41;
Den41 = sin(Bet_41);

Num42 = 3e8*PuW_41*Rrx_41*RBW_41;
Den42 = 2*(cos(Bet_41/2))^2;

DelR = (3e8*PuW_41)/(2*cos(Bet_41/2));
RrDr = Rrx_41*RBW_41;

CeS41 = 3e8*PuW_41/(2*cos(Ba_00/2));

Br41 = Br_00*1e3;
Aa41 = (Rrx_41+Rtx_41)*1e3/2;
Ap41 = Aa41 + (3e8*PuW_41/2);
Bb41 = (Aa41^2 - (Br41^2)/4)^(0.5);
Bp41 = (Ap41^2 - (Br41^2)/4)^(0.5);

Emax41 = ((Aa41*(Ap41-Aa41))/(Bb41*(Bp41-Bb41)))-1;

fprintf('\nBidarsa - Bistatic Footprint:\n');
if DelR < RrDr
 Ac41 = Num42/Den42;
 fprintf('This is a Pulsewidth Limited case.\n');
else

84

 Ac41 = Num41/Den41;
 fprintf('This is a Beamwidth Limited case.\n');
end
fprintf('The Bistatic Footprint is %-8.4e sqr-km.\n\n',Ac41);

fprintf('Range Cell Size is %-8.4e m.\n',CeS41);
fprintf('Maximum Error is %-8.4e m.\n\n',Emax41);
%**

% --- Executes on button press in Print.
function Print_Callback(hObject, eventdata, handles)
printdlg('-setup',handles.figure1)

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
delete(handles.figure1)

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpFotPrt
%**

85

G. MATLAB CODE FOR DOPREL.M

This appendix details the DopRel.m code developed to examine the doppler shift

of a moving target.

function varargout = DopRel(varargin)
% DOPREL M-file for DopRel.fig
% DOPREL, by itself, creates a new DOPREL or raises the existing
% singleton*.
% H = DOPREL returns the handle to a new DOPREL or the handle to
% the existing singleton*.
% DOPREL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DOPREL.M with the given input arguments.
% DOPREL('Property','Value',...) creates a new DOPREL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before DopRel_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to DopRel_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help DopRel
% Last Modified by GUIDE v2.5 02-Nov-2003 11:11:15
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @DopRel_OpeningFcn, ...
 'gui_OutputFcn', @DopRel_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before DopRel is made visible.
function DopRel_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;

86

guidata(hObject, handles);
axes(handles.axes1);
[x1,map] = imread('z-DopRel.jpg','jpg');
image(x1);
colormap(map);
set(handles.axes1,'Visible','off');

% --- Outputs from this function are returned to the command line.
function varargout = DopRel_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function Vel_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Vel_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Del_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Del_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function TA_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function TA_input_Callback(hObject, eventdata, handles)

87

%**
% --- Executes on button press in Calculate.
function Calculate_Callback(hObject, eventdata, handles)
global Ba_00 Lambda_00
clc;
Vel_input = eval(get(handles.Vel_input,'String'));
Del_input = eval(get(handles.Del_input,'String'));

Vel_51 = Vel_input;
Del_51 = deg2rad(Del_input);
DoS_51 = (2*Vel_51/Lambda_00)*(cos(Del_51)*cos(Ba_00/2));
DoS_52 = DoS_51/1000; %in kHz
fprintf('\nBidarsa - Doppler Relation:\n');
fprintf('Bistatic Doppler Shift is %-8.4e kHz.\n\n',DoS_52);

%**
close(figure(1));
%Plotting Doppler Shift Analysis
for Ba_51 = 0:(pi/4):pi;
 Del_52 = -pi:(pi/360):pi;
 DoS_53 = (2*Vel_51/Lambda_00).*cos(Del_52).*cos(Ba_51/2);
 figure(1);
 DoS_54 = DoS_53./1e3;
 Del_53 = 1.*rad2deg(Del_52);
 plot(Del_53,DoS_54);
 title('Bistatic Target Doppler Shift Analysis');
 xlabel('Target velocity aspect angle, \delta, (deg)');
 ylabel('Bistatic Doppler Shift, F_{tgt}(kHz)');
 xlim([-180 180]);
 grid on;
 hold on
end
axes('position', [0 0 1 1],'visible','off');
text(0.87,0.54,'\beta = 180\circ');
text(0.87,0.40,'\beta = 135\circ');
text(0.87,0.25,'\beta = 90\circ');
text(0.87,0.17,'\beta = 45\circ');
text(0.87,0.13,'\beta = 0\circ');
hold off
%**

% --- Executes on button press in Print.
function Print_Callback(hObject, eventdata, handles)
printdlg('-setup',handles.figure1)

88

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
delete(handles.figure1)
close(figure(1))

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpDopRel
%**

89

H. MATLAB CODE FOR EWEFF.M

This appendix details the EWEff.m code developed to evaluate the bistatic radar

performance under different jammer environments.

function varargout = EWEff(varargin)
% EWEFF M-file for EWEff.fig
% EWEFF, by itself, creates a new EWEFF or raises the existing
% singleton*.
% H = EWEFF returns the handle to a new EWEFF or the handle to
% the existing singleton*.
% EWEFF('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in EWEFF.M with the given input arguments.
% EWEFF('Property','Value',...) creates a new EWEFF or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before EWEff_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to EWEff_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help EWEff
% Last Modified by GUIDE v2.5 23-Oct-2003 14:10:38
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @EWEff_OpeningFcn, ...
 'gui_OutputFcn', @EWEff_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before EWEff is made visible.
function EWEff_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;

90

guidata(hObject, handles);
axes(handles.axes1);
[x1,map] = imread('z-EWEff.jpg','jpg');
image(x1);
colormap(map);
set(handles.axes1,'Visible','off');

% --- Outputs from this function are returned to the command line.
function varargout = EWEff_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function Pj_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Pj_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Gj_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Gj_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Fj_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Fj_input_Callback(hObject, eventdata, handles)

91

% --- Executes during object creation, after setting all properties.
function Bn_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Bn_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Lj_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Lj_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Rj_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Rj_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Bj_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Bj_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Sm_input_CreateFcn(hObject, eventdata, handles)

92

if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Sm_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Lr_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Lr_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Lt_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Lt_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Fr_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Fr_input_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Ft_input_CreateFcn(hObject, eventdata, handles)
if ispc
 set(hObject,'BackgroundColor','white');

93

else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Ft_input_Callback(hObject, eventdata, handles)

%**
% --- Executes on button press in Calculate.
function Calculate_Callback(hObject, eventdata, handles)
global Pt_00 Gt_00 Fq_00 SN_00 Pt_00 Gr_00 Ts_00 Bn_00 Sm_00...
 Ft_00 Fr_00 Lt_00 Lr_00 Lambda_00 RtRr11
clc;
Pj_input = eval(get(handles.Pj_input,'String'));
Gj_input = eval(get(handles.Gj_input,'String'));
Fj_input = eval(get(handles.Fj_input,'String'));
Bj_input = eval(get(handles.Bj_input,'String'));
Rj_input = eval(get(handles.Rj_input,'String'));
Lj_input = eval(get(handles.Lj_input,'String'));

Pj_61 = 10^(Pj_input/10);
Gj_61 = 10^(Gj_input/10);
Fj_61 = 10^(Fj_input/10);
Bj_61 = Bj_input*10^6;
Rj_61 = Rj_input*10^3;
Lj_61 = 10^(Lj_input/10);

Num61 = Pt_00*Gt_00*(Ft_00)^2*(Fr_00)^2*Lj_61*Bj_61*Sm_00*(Rj_61)^2;
Dem61 = Pj_61*Gj_61*(Fj_61)^2*Lt_00*Lr_00*Bn_00*4*pi*SN_00;
RtRrJ1 = (Num61/Dem61)^(0.5);
fprintf('\nBidarsa - EW Effects:\n');
fprintf('Bistatic Max Range Product with Jamming (RtRr)j is %-8.4e km^2.\n\n',RtRrJ1);

%**
close(figure(1));
%Plotting EW Effects Analysis
for Sm_611 = [(Sm_00/10) Sm_00 (Sm_00*10)]
 Pj_611 = (Pj_61/100):(Pj_61/100):(Pj_61*100);
 Num611 = Pt_00*Gt_00*(Ft_00)^2*(Fr_00)^2*Lj_61*Bj_61.*Sm_611*(Rj_61)^2;
 Dem611 = Gj_61.*Pj_611*(Fj_61)^2*Lt_00*Lr_00*Bn_00*4*pi*SN_00;
 RtRrJ61 = ((Num611./Dem611).^(0.5));
 Pj_612 = 10.*log10(Pj_611);
 figure(1);
 plot(RtRrJ61,Pj_612);
 title('Burn-through Range Analysis');

94

 xlabel('Max Range Product with Jamming (km^2)');
 ylabel('Jammer Transmit Power (dBW)');
 grid on;
 hold on
end
axes('position', [0 0 1 1],'visible','off');
text(0.15,0.15,'0.1\sigma_{B}');
text(0.38,0.20,'\sigma_{B}');
text(0.60,0.25,'10\sigma_{B}');
hold off
%**

% --- Executes on button press in Print.
function Print_Callback(hObject, eventdata, handles)
printdlg('-setup',handles.figure1)

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
delete(handles.figure1)
close(figure(1))

% --- Executes on button press in Help.
function Help_Callback(hObject, eventdata, handles)
yHlpEWEff
%**

95

LIST OF REFERENCES

1. M. I. Skolnik, Introduction to Radar Systems, 3rd Edition, McGraw-Hill, New

York, 2001.

2. S. Kingsley and S. Quegan, Understanding Radar Systems, SciTech, Raleigh, NC,

1992.

3. N. J. Willis, Bistatic Radar, 2nd Edition, Technology Service Corporation, Silver

Spring, MD, 1995.

4. R. Bennstein and N. J. Willis, unpublished report, Bistatic Radar Project, Naval

Postgraduate School, Monterey, CA.

5. IEEE Standard Radar Definitions, IEEE Std 686-1997, September 16, New York,

1997.

6. M. I. Skolnik, Radar Handbook, 2nd Edition, McGraw-Hill, New York, 1990.

7. D. C. Jenn, unpublished notes, Naval Postgraduate School, Monterey, CA.

8. N. J. Willis, “Bistatic Radars and Their Third Resurgence”, 2002 IEEE Radar

Conference, Long Beach, CA, April 2002.

9. URL: http://www.roke.co.uk/sensors/stealth/cell_phone_radar_concept.asp,

November 2003.

10. D. C. Schleher, MTI and Pulse Doppler Radar, Artech House, Norwood, MA,

1991.

11. H. D. Griffiths, “Bistatic Radar – Principles and Practice”, Microwave

Conference, Brazil, 1993, SMO International, Volume 2, August 2-5, 1993, page

519-526.

12. H. D. Griffith, C. J. Baker, J. Baubert, N. Kitchen, and M. Treagust, “Bistatic

Radar Using Satellite-Borne Illuminators”, Radar 2002, Edinburgh, UK, October

2002, page 1-5.

96

13. B. R. Mahafza, Radar Systems Analysis and Design Using Matlab, Chapman &

Hall, London, 2000.

14. P. Marchand and O. T. Holland, Graphics and GUIs with Matlab, 3rd Edition,

Chapman & Hall, London, 2003.

97

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School

Monterey, California

3. Professor John P. Powers, Chairman, Code EC/Po

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California

4. Professor David C. Jenn, Code EC/Jn

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California

5. Professor D. Curtis Schleher, Code EC/Sc

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California

6. Professor Jeffrey Knorr, Code EC/Ko

Department of Electrical and Computer Engineering

Naval Postgraduate School

 Monterey, California

98

7. Nicholas J. Willis

Carmel, California

8. Professor Yeo Tat Soon

Director, Temasek Defence Systems Institute

Singapore

9. Teo Ching Leong

Singapore Technologies Marine

Singapore

